人工智能时代的小科普
本文仅是人工智能最基础知识的概述,没有深入计算机实现层面
人工智能,作为计算机科学的一个重要分支,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。作为一个面向未来的新技术,值得我们好好探索。
1.人工智能的发展
人工智能的发展历经了三起三落,才走向今天勃勃生气的繁盛景致。
“人工智能”(ARTIFICIAL INTELLIGENCE)一词最初是在1956年DARTMOUTH学会上提出的。其核心是希望计算机可以帮助人来获取一些认知、感知和决策的难题的解决方案。这样的课题成为了全球技术圈的热点,并相继取得了一些研究成果,如机器定理证明、跳棋程序等,人工智能的序幕就此拉开。人工智能发展初期的突破性极大促进人们对人工智能的期望值,一些科学家开始尝试一些不符合实际的目标方案,陷入接二连三的失败,使得人们对人工智能的期望值大大下降。20世纪70年代开发的专家系统模拟人类专家的知识和经验解决特定领域的问题,标志人工智能实现从理论研究走向实际应用并且能够使用专业知识技术解决专门问题的突破。伴随着人工智能的应用规模扩张与高速增长,专家系统也存在诸多待解决的问题,使得人工智能发展再度受限。20世纪90年代中期,乘着互联网发展的东风,加持云存储、大数据、物联网的赋能,以深度神经网络为代表的人工智能技术发展迅速,人工智能打破了技术牢笼,实现了新的跨越与爆发式增长。其发展历程可以概括为下图。
2.人工智能现状
如今,人工智能遍地开花,我们可以把现状概括为——“专用人工智能取得重要突破、通用人工智能尚处于起步阶段”。我们可以看到,对于专业领域上的人工智能,如“阿尔法Go“在下围棋上表现得极为出色。这类人工智能目标更清晰明确,干扰性小,边界明晰,发展也自然更迅速;而对于通用领域来讲,其还达不到完全能领会人们的指令并作出正确判断的地步,泛化领域的人工智能由于其涉足范围广,发展并不超前。
也可以看到,人工智能创新创业走向快车道——对于一些创新创造的人工智能产品,他们正在赋能升级传统行业。搭载了人工智能的融合创新产品显得更加高端智能,逐渐受到消费者喜爱与偏好。
总之,人工智能的社会影响日益显著。其在智能交通、智能家居、智能医疗等智能领域的优势凸显,发展人工智能必对人民、社会、国家产生积极正向的作用。在《工人日报》的一篇社评就写到——人工智能作为新一代产业变革的核心驱动力之一,以AI为典型代表的、基于大模型应用的技术创新和产业成果在我国全面开花,正成为人工智能发展的新趋势。
但是,人工智能目前仍然存在诸多困境。首先,社会上对人工智能存在一些“炒作”,夸大其词的宣传不免让人们对人工智能的真实发展水平产生错误认识认知;同时,隐私保护、知识产权、科技伦理等诸多衍生的现实问题也需要我们一同探讨才能达成共识,找到适合的解决方案。
3 .人工智能的应用
人工智能在各大行业的应用广阔。随着“互联网+万物“概念的引进和提出,人工智能正在逐步渗入我们的各行各业中。
下面将用简单的几个例子说明。
① 智能家居与物联网
智能家居搭载人工智能,配合智能音箱等设备,可以让用户以自然语言对话的交互方式,实现影视娱乐、生活服务、对话交流、信息拆线呢等操作,并且可以通过链接已经适配的互联网家居产品语音控制家具,同时支持自定义场景达到条件自动触发,达到万物互联的目的。国内的天猫精灵、小米智能家居已经实现这类技术的广泛应用。华为正在尝试更进一步的真正的万物互联模式。
② 智能交通
“人工智能+交通”的模式,对我们的生活也大有裨益。这类系统能够使实现自动对交通需求和流量的分析,通过全局最优解的快速计算,引导交通流量变化,快速输送用户群体到目的地。诸如人工智能控制的“绿波带”,公交车的调度系统,导航app的堵车预测等。
③ 智能金融
人工智能对金融的生态领域影响也很显著。人工智能可以根据用户的消费行为习惯个性化推荐相关金融产品,推广个性化的金融服务;也可以综合消费者的消费征信记录,自动生成判定用户的信用分。人工智能在金融的巨大价值还藏在金融安全上,例如支付宝的金融风控系统就是依照人工智能对用户的异常行为的判断,及时阻止异常的资金举动,保障用户的金融安全。
④ 个性化推荐
人工智能的个性化推荐在目前的互联网产品中运用广泛。例如世界最大的视频提供商YouTube的基于神经网络的推荐系统,可以实时根据用户的点赞、收藏等行为形成用户画像和视频标签,基于以上特性形成个性化的精准推送,满足不同人群的差异化视频需求。
人工智能的应用在智能医疗、智能教育、智能工业上也有诸多例子。可见,人工智能正在各大行业发光发热,其巨大价值正在逐步发掘。
4.人工智能技术与分类
随着人工智能的发展,人工智能技术也在不断创新突破。目前人工智能的前沿和基础技术主要有以下几类:
① 机器学习
机器学习是实现智能的基础技术,是使计算机具有智能的根本途径。这项技术可以让计算机通过模拟人的学习方式和动作,从而重新组织已经掌握的知识体系并使得其不断完善
② 自然语言处理
这项技术可以满足人和计算机用自然语言的有效通信。其可以让人工智能具备一定的理解、反应自然语言的能力,可以让人与人工智能之间实现自然的沟通交流。能够使得人工智能更加普适化、大众化
③ 计算机视觉
计算机视觉解决的是机器“看“的一门科学技术,其利用摄像机和电脑代替人的眼睛进行识别与处理。其技术可运用在识别、捕捉、跟踪、测量、监视、检测等多项功能点上。其需要从图像这一多维数据中获取有效信息并提取处理,形成有效数据。是人脸识别技术的基础技术
④ 人机交互
人机交互是研究机器与使用者间的交互逻辑与关系的学科。用户可以由人机交互的界面进行操作,控制系统施发命令。人机交互使得人与机器之间可以使用某一种特定的交互方式 ,高效率地完成人和机器之间的信息交互。视频APP的点赞按键,核电站的控制台等都可以视为人机交互的平台。
⑤ 生物特征识别
生物特征识别可以让计算机识别人体的某个指定特征来完成对个体的身份核实和判读。例如常见的指纹识别、人脸识别就是生物识别技术的体现。多用在刑事侦查、保密、权限管理等功能点上。
除此之外,还有“语音识别“技术、”虚拟现实“技术、”决策管理“技术等,门类多而复杂,笔者在此不过多阐述
5.人工智能分类
目前流行的分类方法将人工智能分三类:
① 弱人工智能(ANI)
只能代替人处理某个单方面能力的工作,其本质上只是实现了某种人类具备的技能,但没有取得自主学习的认知。
② 强人工智能(AGI)
可代替一般人完成生活中的大部分工作,包括不同领域的技术它都能掌握。其各方面都能和人类比肩,它可以思考、认识、理解问题并综合分析。具有一定的经验管理和快速学习能力。
③ 超人工智能(ASI)
在近乎大部分领域都比最聪明的人脑都具备更高的智能,可以如通人类进行自主的学习。其各项水平(包括科创、社交、决断)会远远超越人类。其也具备一定的直觉与意识。